УДК 339.9:001.895(5)

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ТЕНДЕНЦИЙ И ОСОБЕННОСТЕЙ ИННОВАЦИОННОГО РАЗВИТИЯ СТРАН АЗИАТСКО-ТИХООКЕАНСКОГО РЕГИОНА

COMPARATIVE ANALYSIS OF TRENDS AND MAIN CHARACTERISTICS OF INNOVATION PERFORMANCE IN COUNTRIES OF THE ASIA-PACIFIC REGION

Е. С. Ботеновская,

старший преподаватель кафедры международных экономических отношений БГУ, канд. эконом. наук

E. Botenovskaya

Дата поступления в редакцию — 09.02.2016 г.

В статье исследованы тенденции и показана роль стран Азиатско-Тихоокеанского региона в мировом инновационном развитии, а также выявлены особенности национальных инновационных систем Китая, Японии, Индии и Сингапура.

The article examines trends and the role of countries of the Asia-Pacific region in the world innovation performance and main characteristics of the national innovation systems of China, Japan, India and Singapore.

Введение.

В условиях усиления международной конкуренции формирование и развитие национальных инновационных систем (НИС) становится необходимым условием достижения качественного экономического роста стран в системе мирового хозяйства. Мировые тенденции инновационного развития свидетельствуют о возникновении многополярного мира науки и технологий с растущим числом конкурентов, в первую очередь за счет азиатских стран.

Изменение инновационных конкурентных условий, определяемых странами с различными по масштабам экономиками, подтверждено распределением мировых затрат на исследования и разработки (ИР), патентных заявок, долей экспорта высокотехнологичной продукции по разным регионам мира; ростом числа исследователей [2, с. 100].

Представляет научный и технологический интерес создание организационных и экономических условий, обеспечивающих инновационное развитие на базе новшеств, инноваций и приоритетных высокотехнологичных отраслей в структуре экономик больших и малых стран. Поэтому исследование тенденций и особенностей инновационного развития успешных азиатских стран приобретает особую актуальность.

В основу факторного анализа положены структурные исследования НИС больших и малых стран Азиатско-Тихоокеанского региона, существенно отличающихся имеющимися ресурсами. Целью исследования выбран анализ организационных условий эффективного функционирования национальных инновационных систем по критериям структурной перестройки экономики, инвестиций в интеллектуальный актив, исследования и разработки,

добавленной стоимости, конкурентоспособности на рынках высокотехнологичных товаров и услуг.

Анализ особенностей национальных инновационных систем.

Азиатский регион опережал Европу и являлся вторым регионом в мире по абсолютным показателям валовых внутренних расходов на научные исследования и разработки в 2005 г., а с 2008 г. занимает первое место в мире по данному показателю, опережая США.

В табл. 1 представлены доли Европейского региона, США, Японии, Китая и других стран Азии (Индии, Республики Корея, Сингапура, Малайзии и Тайваня) в мировых затратах на ИР. Примечательно, что доля Китая в мировых затратах на ИР возросла с 3,6 % в 1995 г. до 12,7 % в 2005 г., и в 2008 г. увеличилась практически до 18 %.

Как видно, доли Европы, США и Японии за 1995–2014 гг. уменьшились. В других странах Азиатского региона, наоборот, наблюдается рост активности в затратах на ИР. Особенно это касается развивающейся экономики *Китая*: наукоемкость ВВП Китая увеличилась более чем наполовину за 1999–2007 гг.: с 0,76 % в 1999 г. до 1,49 % в 2007 г. и составила 2,08 % в 2013 г. Уровень наукоемкости ВВП Китая возрос именно

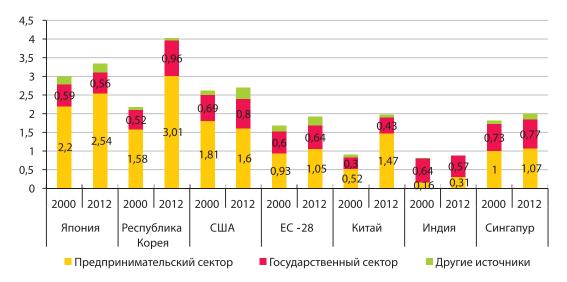
благодаря инвестициям предпринимательского сектора, доля которого в финансировании ИР составляла 57,6 % в 2000 г. и 74,6 % в 2013 г. [14] Однако большинство затрат на ИР сфокусированы на разработках, на фундаментальные и прикладные исследования в 2011 г. пришлось только 4,7 и 11,8 % соответственно [10].

Валовые внутренние затраты на ИР Индии за 2002–2012 гг. увеличились более чем в 4 раза и составили 0,88 % ВВП 2012 г. Из них 64,4 % финансировалось государством, и только 35,6 % приходилось на предпринимательский сектор, хотя наблюдается тенденция повышения роли бизнес-сектора (13,6 % в 1990 г.) (см. рисунок). Доля ИР, направленных на фундаментальные исследования, возросла с 20 % в 2000 г. до 26 % в 2012 г., прикладные исследования составляют 36 %, разработки — 32 %.

В Японии традиционно высокий уровень наукоемкости ВВП, который уже в 2000 г. составлял 3 %, в 2013 г. — 3,47 %, с доминирующей ролью бизнес-сектора в финансировании ИР (72,4 % в 2000 г. и 76,1 % в 2012 г.). Более 60 % затрат на ИР направлены на разработки, 23,1 % — на прикладные исследования и 14,7 % — на фундаментальные исследования [18, р. 25].

В Сингапуре как предпринимательский сектор, на который приходится 53,4 % всех затрат

Таблица 1


Мировые затраты на исследования и разработки, %

Страна/Регион	1995	2005	2010	2012	2013*	2014*
Европа	30,8	26,7	24,8	23,1	22,4	21,7
США	38,4	34,4	32,8	32,0	31,4	31,1
Азия	23,8	31,1	34,3	37	38,3	39,1
R иноп R	15,9	13,0	11,8	10,5	10,5	10,5
Китай	3,6	12,7	12	15,3	16,5	17,5
Индия	1,4 ¹	1,7	2,6	2,6	2,7	2,7
Республика Корея	2,9	3,5	3,9	3,9	3,9	3,9
Сингапур	-	-	0,6	0,6	0,6	0,6
Малайзия	-	-	0,2	0,3	0,3	0,3
Тайвань	-	_	1,5	1,4	1,4	1,4
Весь мир	100	100	100	100	100	100

Источник: составлено автором на основе [7; 8, pp. 1-2; 6, p. 3; 11, p. 22;].

Примечание: * — по предварительным данным, - — нет данных, 1 — Индия, 1996.

НАУЧНЫЕ ПУБЛИКАЦИИ

Затраты на исследования и разработки по сектору финансирования, 2000 и 2012 гг., % к ВВП Источник: составлено автором на основе [14, р. 28].

на ИР, так и государственный (38,5 %) играют важную роль в финансировании ИР. Среди рассматриваемых стран Азиатского региона именно в этой стране наибольшая доля финансирования ИР из-за рубежа — 5,9 % всех валовых внутренних затрат на ИР, в Японии — 0,5 %, в Республике Корея — 0,3 % [14, р. 20]. ИР бизнес- и госсектора традиционно сконцентрированы на прикладных исследованиях. В целом на прикладные исследования приходится 32,9 %, на фундаментальные исследования — 20,6 %, на разработки — 46,5 %. С 2006 г. наблюдается тенденция повышения роли фундаментальных исследований (20,3 % в 2009 г.).

Предпринимательский сектор также является главным сектором выполнения ИР, более 75 % всех ИР выполнялось в Японии, Республике Корея и Китае и более 60 % — в Сингапуре. По данным Организации экономического сотрудничества и развития (ОЭСР), зафиксировано снижение доли университетского сектора в выполнении ИР в Японии с 14,5 до 13,5 %, в Республике Корея — с 11,3 до 9,2 % и в Китае — с 8,6 до 7,2 %, в то время как в США доля университетского сектора составила 14,5 %, в ЕС-28 — 23,6 % в 2012 г. Однако Сингапур, будучи страной с малой экономикой, по данному показателю, равному в 2012 г. 29 %, превосходит уровень европейских стран с малой экономикой, которые являются лидерами инновационного развития, — Швеции (27,1 %), Финляндии (21,5 %) и Швейцарии (28,1 %).

По данным ОЭСР, число исследователей на 1000 занятого населения в эквиваленте полной занятости (ЭПЗ) увеличивается практически во всех странах и регионах (табл. 2) [14, р. 74]. В 2009 г. в зоне ОЭСР данный показатель возрос до 7,6 по сравнению с 6,6 в 2000 г. и 5,9 в 1995 г.

Как видно, в 2013 г. ЕС-28 и США уступают Республике Корея, Японии и Сингапуру по числу исследователей на 1000 занятого населения в ЭПЗ. Несмотря на то, что по числу исследователей на 1000 занятого населения в ЭПЗ Китай значительно отстает от других стран, данный показатель вырос в 2013 г. по сравнению с 2000 г. более чем в 2 раза.

За рассматриваемый период в Японии, Республике Корея и КНР возросла доля исследователей в предпринимательском секторе. На долю сектора высшего образования приходится более 44 % исследователей в Сингапуре.

Что касается патентной активности, то здесь также наблюдается тенденция роста заявок на патенты Азиатских стран. Заявители из Японии, США и Китая являются ведущими по подаче заявок на патенты, причем в 2010 г. Китай опередил Японию по числу заявок от резидентов. Несмотря на то, что эти страны имели довольно скромное количество патентов по сравнению с ЕС, США и Японией в абсолютном выражении, темпы роста патентных зая-

Таблица 2

Число исследователей на 1000 занятого населения в ЭПЗ и общее число исследователей в ЭПЗ в США, ЕС-27 и Японии

	Число исследователей на 1000 занятого населения (ЭПЗ)		Число исследователей в ЭПЗ							
Страна / Регион			Всего		Предприниматель- ский сектор, %		Государственный сектор, %		Сектор высшего образования, %	
	2000 г.	2013 г.	2000 г.	2013 г.	2000 г.	2013 г.	2000 г.	2011 г.	2000 г.	2011 г.
США	7,1	8,7*	983 208	1 265 064*	69,9	68,7	4,8	-	_	-
EC-28	5,2	7,7	1 117 809	1 729 800	46,7	48,2	15,1	12,3	-	38,6
Япония	9,9	10,2	647 572	660 489	65,1	73,5	4,8	4,7	27,7	20,7
Республика Корея	5,1	12,8	108 370	321 842	66,3	78,7	10,7	7,2	21,8	13,0
Сингапур	7,7	10,2*	16 633	34 141*	51,9	50,6*	7,5	5,1*	40,6	44,2*
Китай	1,0	1,9	695 062	1 484 040	50,9	62,2	27,8	19,5	21,3	18,4

Источник: составлено автором на основе [14, pp. 11-12, 32, 35, 51, 52, 59].

Примечание: * — 2012 г., EC-28 — 2010 г., – — нет данных.

вок в этих странах стремительно возрастали. По данным Европейского патентного бюро, за 2000–2005 гг. число патентных заявок ЕС, поданных по процедуре Договора о патентной кооперации, увеличилось на 13 %, США — на 9,6 %, в то время как Японии — на 100 %, Республики Корея — 161 %, Китая — 137 %, Индии — 241 % [11, р. 67].

По данным Всемирной организации интеллектуальной собственности, рост заявок на патенты по процедуре РСТ в 2010 г. (5,7 % по сравнению с предыдущим годом) произошел преимущественно за счет заявителей из Китая, Японии и Республики Корея, доля которых составила 5,4 процентных пункта прироста. Более того, в 2010 г. Азиатский регион впервые стал регионом с наибольшим числом заявок на патенты по договору РСТ. В 2014 г. на страны Азии пришлось 40,6 % всех заявок на патенты, на Северную Америку — 30,1 %, на Европу — 27,4 % [16, р. 37]. На долю Японии приходится 48,8 % заявок на патенты Азиатского региона, на Китай — 29,4 %, Республики Корея — 15,1 %, Индии — 1,6 %, Сингапур — 1,1 % [16, p. 38].

Тенденция увеличения высокотехнологичного экспорта также подтверждает возрастающую роль Азиатского региона. Так, по данным Всемирного банка, в 2013 г. по экспорту высокотехнологичной продукции лидирует Китай,

затем следуют Германия, США, Сингапур, Республика Корея, Франция, Япония, Нидерланды, Малайзия и Швейцария [9]. Доля Китая увеличилась с 3,6 % в 2000 г. до 25 % в 2012 г., Индии — с 0,2 % до 0,6 %, доля США уменьшилась с 18,4 % в 1999 г. до 7 % в 2012 г., Японии — с 10,6 до 6 % в 2012 г. Первенство Китая произошло преимущественно за счет экспорта компьютерного и офисного оборудования электронного и телекоммуникационного оборудования, поскольку именно на эти две группы приходится практически 2/3 мирового высокотехнологичного экспорта. По данным ОЭСР, доля Китая в экспорте товаров компьютерного и офисного оборудования увеличилась с 22,67 % в 2005 г. до 37,46 % в 2011 г., в экспорте электронной промышленности — с 13,70 до 22,83 % соответственно.

Выделим отдельные характеристики НИС КНР, Индии, Японии и Сингапура.

Сильными сторонами НИС Китая является обладание наибольшим числом специалистов в сфере науки и техники, несмотря на отставание от развитых стран по числу исследователей в расчете на 1 млн жителей КНР[13]. Число исследователей постоянно растет (примечательно, что за период 2000–2007 гг. их количество в КНР практически удвоилось). Это обусловлено привлечением высококвалифи-

цированных специалистов из-за рубежа, расширением доступа к высшего образованию, высокой ролью бизнес-сектора в выполнении ИР (76,6 %) и их финансировании, увеличением финансирования ИР как со стороны предпринимательского сектора, так и со стороны госсектора. Несмотря на уменьшение доли государственного финансирования ИР (с 33,4 % в 2000 г. до 21,1 % в 2013 г.), в абсолютном выражении данная величина увеличилась более чем в 5 раз за 2000–2013 гг.

В то же время китайская исследовательская система централизована, жестко организована и контролируется центральным правительством в Пекине. КНР все еще сильно зависит от зарубежных технологий и иностранных фирм. Так, с начала XXI в. на предприятия с иностранными инвестициями приходилось 85 % всего высокотехнологичного экспорта[5].

Характеристиками китайской НИС все еще являются: фрагментарность и раздробленность, слабые связи с бизнесом фундаментальных и прикладных исследований. Большинство специалистов в ИР занимаются непосредственно разработками, и менее 20 % всех занятых в ИР вовлечено в фундаментальные и прикладные исследования. Слабая защита интеллектуальной собственности представляет препятствие для развития собственных инноваций. Копирование технологий остается наиболее дешевым и быстрым способом производства инновационных товаров, тем самым обеспечивая достижение коммерческого успеха с наименьшими рисками. Проявляется существенная зависимость от импортных источников сырья и топлива и необходимость снижения техногенной нагрузки на окружающую среду (что привело к развитию атомной энергетики) [3, р. 82].

НИС Индии состоит из следующих структурных элементов. Государственная исследовательская система (public research system), которая включает национальные лаборатории различных научно-технологических агентств в области освоения космоса, сельского хозяйства, промышленных исследований, атомной энергии и лаборатории крупных государственных предприятий (в области железнодорожного транспорта, транспорта, авиации и химической промышленности). Част

ные предприятия и ТНК представляют второй важный элемент НИС, на который приходится 35,6 % финансирования ИР. В последние годы роль бизнес-сектора возросла (так, в 1990 г. на его долю в финансировании ИР приходилось только 13,6 %), что связано с обладанием предприятиями конкурентных преимуществ в фармацевтике, автомобильной промышленности, программном обеспечении, телекоммуникациях и биотехнологиях. Отметим, что индийский телекоммуникационный рынок являлся одним из самых быстрорастущих рынков в мире в 2011-2012 гг. По данным ОЭСР, в 2012 г. насчитывалось около 850 млн подписчиков мобильной связи (второе место в мире после Китая). Необходимо отметить, что Индия привлекла более 280 глобальных и зарубежных компаний, входящих в список Fortune, для прямых иностранных инвестиций, открыв лаборатории и предприятия, проводящие научные исследования и опытно-конструкторские работы. Институты высшего образования: в 2013 г. число университетов в Индии превысило 620 с 30 000 аффилированных колледжей. За 2000-2010 гг. засвидетельствовано удвоение числа поступивших студентов: с 8,4 млн до 16,9 млн [12]. Сектор негосударственных исследовательских учреждений играет важную научную и социальную роль, поскольку представляет гражданское общество. Сфера деятельности институтов данного сектора связана с решением вопросов в области окружающей среды, экологии, энергии и развития сельской местности. В качестве примера можно привести Индийский фонд инклюзивных инноваций, программы которого направлены на микро-, малые и средние предприятия (в качестве примера можно привести ремесленников).

НИС Индии отличает ряд особенностей.

Во-первых, это доминирование государственной исследовательской системы, что заметно контрастирует с другими восточноазиатскими странами (Республикой Кореей и Японией), где 75 % затрат на ИР финансируется частными источниками. Тем не менее наметилась тенденция увеличения роли бизнес-сектора. Государственная поддержка ИР сфокусирована на атомной энергетике, обороне, космосе, здравоохранении и сельском хозяйстве. Во-вторых, низкая роль университетов в инновационной системе, которые являются самым слабым звеном НИС, о чем свидетельствует низкая доля ИР, выполняемых в университетском секторе. Недостаточная роль университетов во взаимодействии с наукой и бизнесом. В Индии один из наименьших показателей соотношения научно-технического персонала на 1 млн населения по сравнению с другими странами (137 человек на 1 млн населения). Существует проблема нехватки инженеров в стране, что нетипично для других стран региона — Китая и Республики Кореи.

В-третьих, концентрация ИР: значительная доля затрат на ИР сфокусирована на секторе услуг, на который приходится 2/3 ВВП Индии, и на фармацевтике, особенно на рынке дженериков. По данным аналитического центра RNCOS, объем рынка дженериков в 2010 г. составил 5 млрд долл. США. Индия доминирует как производитель дешевых лекарственных препаратов для людей во всем мире. На долю фармацевтики и информационных технологий приходится более 70 % регистрируемых патентов.

Отличительными чертами НИС Японии являются: проведение собственных исследований в японских компаниях, стремление контролировать как можно больше в цепочке создания стоимости, нежелание принимать принципы открытых инноваций, предпочтение развивать технологии в своей компании (уровень коллаборации между компаниями ниже, чем в других странах). В то же время самодостаточность в ИР привела к определенным опасениям, связанным с возможностью повтора инноваций.

Около 90 % затрат бизнес-сектора на ИР приходится на обрабатывающую промышленность (на топ-12 компаний приходится 1/3 затрат бизнес-сектора). Инновационно активными секторами являются автомобильная промышленность, ИКТ, медицинские инструменты, офисное оборудование, в которых доминируют крупные фирмы: 78 % затрат в автомобильной промышленности осуществляется в компаниях, где более 10 000 работников. Несмотря на доминирование этих секторов, в Японии существуют уникальные отрасли, которые играют важную роль на рынках компонентов и материалов. Несмотря на высокую прибыль, учитывая то, что компании опериру-

ют в специальных областях, они не имеют широкой известности.

Особый интерес вызывают особенности НИС Сингапура (согласно рейтингу Всемирного экономического форума (WEF) это государство представляет вторую конкурентоспособную экономику в мире четвертый год подряд) [17]. НИС характеризуется: развитой институциональной средой (одной из наилучших в мире, уступая по данному показателю только Финляндии), инфраструктурой мирового уровня (отличные дороги, порты, условия для воздушного транспорта), фокусом на образовании, обладает наименее коррумпированной в мире и наиболее эффективной администрацией.

Одной из особенностей НИС Сингапура является концентрация ИР в обрабатывающей промышленности (62,2 %) — 2/3 всех расходов на ИР, из них: в электронике (41,8 %), машиностроении (12,1 %), химической промышленности (2,1 %), и в услугах (37,8 %) — ИР (14,6 %), ИТ и коммуникации (3,7 %). Наблюдается зависимость от иностранных компаний в высокотехнологичном секторе, на которые приходится: ¼ всех предприятий, 40 % занятых и 61 % добавленной стоимости. В высокотехнологичном секторе обрабатывающей промышленности роль зарубежных фирм — многонациональных корпораций (МНК) еще больше, хотя их доля составляет только 13,7 % предприятий, на них также приходится 42,3 % сотрудников и 70 % добавленной стоимости% [15, p. 242].

Среди местных фирм, занятых в ИР, выделяются три группы. Первая состоит из наиболее технически развитых малых и средних предприятий, оперирующих в различных поддерживающих отраслях МНК, особенно в точном машиностроении (приборостроение, радиотехнические и электронные системы, электротехническая промышленность, оптические приборы, персональные компьютеры и лазеры). Вторая группа состоит из государственных предприятий, созданных правительством, для стимулирования участия местных фирм в высокотехнологичных отраслях. Такие компании имеют финансовую поддержку и могут инвестировать в ИР (компании в авиационной промышленности, программное обеспечение). Третья группа состоит из мест-

ных предприятий малого, но быстрорастущего числа высокотехнологичных стартапов, которые пытаются быть пионерами в разработке инновационных продуктов, которые осуществляют свои собственные ИР (компании по производству программного обеспечения, инструментов и приборостроения, контроллеров, компьютерной и коммуникационной техники). Третья волна таких фирм (первые две волны либо закрылись, либо были поглощены МНК) финансируется венчурным капиталом и включает компании, которые основаны профессорами в университетах, исследователями научно-исследовательских организаций и студентами (занятых в сфере программного обеспечения).

Заключение.

Статья определила мировые тенденции инновационного развития, свидетельствующие о возрастающей роли азиатских стран в повышении эффективности мировых инновационных процессов, а именно:

- рост доли стран Азиатского региона в мировых затратах на ИР;
- повышение уровня наукоемкости ВВП преимущественно за счет бизнес-сектора;
- высокая доля предпринимательского сектора в финансировании и выполнении исследований и разработок;
- увеличение числа исследователей; повышение патентной активности;
- увеличение высокотехнологичного экспорта. В то же время НИС Японии, Китая, Индии и Сингапура имеют ряд особенностей:
 - концентрацию ИР в определенных областях;
- вовлеченность в процесс интернационализации ИР Индии, Китая и Сингапура, в отличие от Японии;
- низкую роль университетского сектора в выполнении ИР (за исключением Сингапура);
- низкую долю выполнения фундаментальных исследований;
- доминирование государственной системы в ИР Индии;
- фрагментарность и раздробленность НИС Китая;
- зависимость от иностранных высокотехнологичных компаний Сингапура и Китая.

Приведенный анализ структуры и особенностей инновационной конкурентной среды в азиатском регионе мира выявил лидирующие

позиции Японии и Сингапура (страны с малой экономикой), а также приоритетную ориентацию на инновационный путь развития демографически и экономически больших стран — Китая и Индии.

Республика Беларусь относится к странам с малой экономикой и ограниченными природными ресурсами в их абсолютном измерении. Поэтому рассмотренный инновационный опыт азиатских стран может оказаться полезным в приоритетной структурной перестройке экономики, в совершенствовании организации и повышении эффективности НИС. Проведенный анализ показал, что страны с высокой наукоемкостью ВВП характеризуются высоким уровнем вовлеченности предпринимательского сектора в финансирование ИР, в то время как в Республике Беларусь доля коммерческих расходов на ИР составила 0,32 % ВВП в 2014 г., а уровень наукоемкости ВВП упал до 0,52 % в 2014 г. [4, с. 10]. Отметим, что если в рассматриваемых странах и в мире в целом наблюдается рост числа исследователей, то в Республике Беларусь уменьшается число исследователей, что отражает негативные тенденции снижения внимания к науке, снижения финансирования и низкой оплаты труда научных работников.

Как показывает опыт зарубежных стран, механизм разработки и реализации национальной программы инновационного развития должен учитывать особенности институциональной среды и инновационной инфраструктуры страны. Инструменты инновационного развития должны быть направлены на поддержку создания и роста новых инновационных организаций; вовлечение страны в процесс интернационализации ИР; содействие как межфирменной кооперации, так и сотрудничеству между предприятиями и государственными исследовательскими учреждениями [1]. Это позволит активизировать взаимодействие университетов, бизнеса и государства, повысить роль вузовской науки в НИС, создать благоприятный инновационный климат для создания и роста новых инновационных предприятий, стартапов и компаний спин-офф. В совокупности переход к инновационной экономике позволит обеспечить успешное технологическое и социальное развитие Беларуси.

Литература:

- 1. Ботеновская, Е. С. Направления и механизмы реализации инновационной политики Республики Беларусь / Е. С. Ботеновская // Банк. весн. 2014. № 1/606. С. 36–43.
- 2. Давыденко, Е. Л. Европейские страны с малой экономикой. Особенности внешней торговли и инновационного развития / Е. Л. Давыденко, Е. С. Ботеновская. Минск: БГУ, 2015. 275 с.
- 3. Насибов, И. Научно-технический потенциал Китая: итоги и перспективы развития / И. Насибов // Мировая экономика и международные отношения. 2012. № 10. C. 79–83.
- 4. Наука и инновационная деятельность в Республике Беларусь. Статистический сборник. Минск, $2015. 138 \, \mathrm{c}.$
- 5. Bichler, J. The Chinese indigenous innovation system and its impact on foreign enterprises / J Bichler, C. Schmidkonz // Munich Business School Working Paper, University of Applied Sciences. Munchen, 2014.
- 6. Global R&D Funding Forecast 2014 [Electronic resource] // Mode of access: https://www.battelle.org/docs/tpp/2014_global_rd_funding_forecast.pdf. Date of access: 30.06.2015.
- 7. Global R&D Funding Forecast 2012 [Electronic resource] // Mode of access: http://www.rdmag.com/sites/rdmag.com/files/GFF2013Final2013_reduced.pdf. Date of access: 30.06.2013.
- 8. Global R&D Report 2008 [Electronic resource] // Mode of access: http://battelle.org/ASSETS/298066B841E C4E3099ACC75AB4A8915B/RD79GlobalReport%20(2). pdf . Date of access: 13.11.09.
- 9. High-technology exports (current US\$) [Electronic resource] // The World Bank. Mode of access: http://data.worldbank.org/indicator/TX.VAL.TECH.CD/countries?order=wbapi_data_value_2013%20wbapi_data_

- value%20wbapi_data_value-last&sort=asc&display=default. Date of access: 06.01.2016.
- 10. Jia, H. R&D share for basic research in China dwindles / H. Jia // [Electronic resource] // Chemistryworld. Mode of access: http://www.rsc.org/chemistryworld/2014/09/research-development-rd-share-basic-research-china-dwindles— Date of access: 29.09.2015.
- 11. Key Figures 2007 on Science, Technology and Innovation. Towards a European Knowledge Area [Electronic resource] // European Commission. Mode of access: http://ec.europa.eu/invest-in-research/pdf/download_en/ keyfigures__071030_web.pdf. Date of access: 16.10.2015.
- 12. Krishna, V. V. ERAWATCH COUNTRY RE-PORTS 2012: India / V. V. Krishna // ERAWATCH Network Jawaharlal Nehru University. 2013. 57 p.
- 13. Li, Y. ERAWATCH COUNTRY REPORTS 2012: China / Yin Li // ERAWATCH Network Georgia Institute of Technology. 2013. 42 p.
- 14. OECD, MAIN SCIENCE AND TECHNOLOGY INDICATORS, Volume 2015 Issue 1 [Electronic resource] // OECD. Mode of access: http://www.oecd-ilibrary.org/science-and-technology/main-science-and-technology-indicators_2304277x. Date of access: 30.01.2016.
- 15. OECD. (2013), Innovation in Southeast Asia Paris: OECD Publishing, 2013. 349 p.
- 16. PCT yearly review: the international patent system / World Intellectual Property. Organization. Geneva: WIPO, 2015. (WIPO Publication; No. 901E) 102 p.
- 17. Schwab, K. The Global Competitiveness Report 2014–2015 / K. Schwab // World Economic Forum. Geneva. Switzerland, 2014.
- 18. Woolgar, Lee, ERAWATCH COUNTRY REPORTS 2012: Japan / Lee Woolgar // ERAWATCH network. 2013. 59 p.