
СОВЕРШЕНСТВОВАНИЕ СПОСОБОВ СЕЛЕКЦИИ И РАЗВЕДЕНИЯ ЖИВОТНЫХ С ИСПОЛЬЗОВАНИЕМ СОВРЕМЕННЫХ БИОТЕХНОЛОГИЙ.

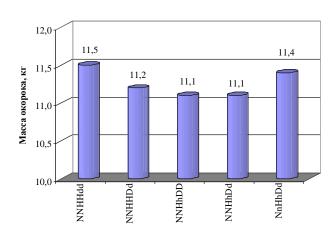
Ганджа А.И., кандидат с.-х. наук, заведующая лабораторией генетики с.-х. животных

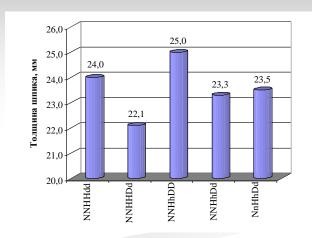
Схема получения эмбрионов in vitro

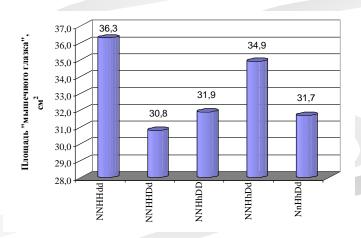
зависимость выхода эмбрионов от биологических и физических факторов, %

- □ эстральная сыворотка
- сурфагон
- □ соматотропин
- □ эстрофан
- эпибрассинолид
- монослой клеток кумулюса
- монослой клеток яйцевода
- □ факторы роста
- кофеин
- лазерное излучение
- □ поляризованный свет

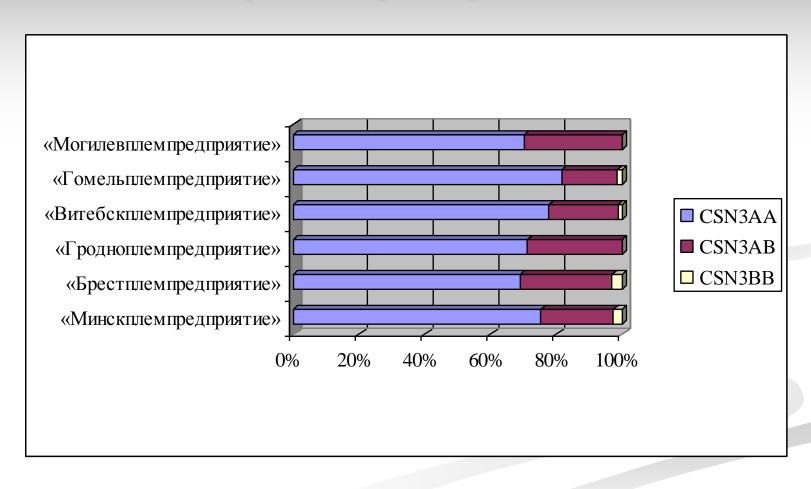
Эффективность замораживания ооциткумулюсных комплексов на разных


стадиях созревания.

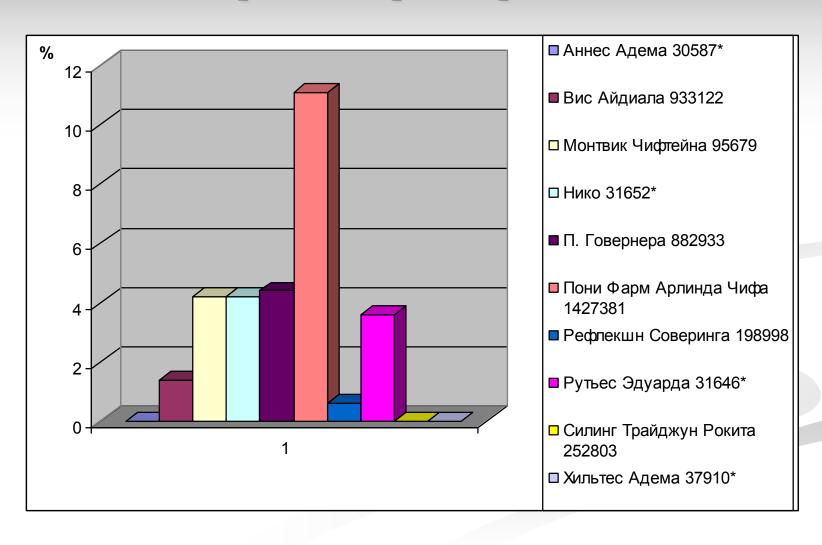

No	РЕЖИМ .				Состояние ооцит-кумулюсных комплексов							
ПП				I	после от	таивания,	ивания, п-%		после оплодотворения, п-%			.%
	насыщения	оттаивания	Стадия созревани я	n	нали чие кум улю са	дефор мация оболоч ки	фрагме нтация ооплаз мы,	n	нали чие кум улю са,	деф орм ация обол очки	фраг мен таци я ооп лазм ы	дро бящ ихся клет ок,
I	I 1. 10% глицерин + 10% пропандиол, 10 минут;	1. водяная баня 1 минута, + 25°C; 2. 1M сахароза 5	свежевыд еленные	28	28- 100	3-10,7	23-82,1	25	14- 56,0	6- 24,0	22- 88,0	1- 4,0
	2. 25% глицерин + 25% пропандиол	мин.; 3-6. 20% FBS по 2 мин.	созревшие	24	24- 100	3-12,5	19-79,2	21	6- 28,6	8- 38,1	20- 95,2	_
П	этапа 15 мин. сек. +25° 2. 0,	1. 10 сек. воздух, 10 сек. водяная баня	свежевыд еленные	36	34- 94,4	5-13,9	32-88,9	35	12- 34,3	7- 20,0	34- 97,1	_
		+25°C; 2. 0,7М глицерин или 0,75М	созревшие	24	21- 87,5	2-8,3	19-79,2	20	15- 75,0	5- 25,0	18- 90,0	1- 5,0
III	П 1,5М этиленгликоль в 3 этапа 15 мин.	этиленгликоль + 0,5M сахароза; 3-6. 20% FBS по 2	свежевыд еленные	37	37- 100	4-10,8	20-54,1	31	25- 80,6	7- 22,6	27- 87,1	3- 9,7
		3-0. 20% FBS по 2 мин.	созревшие	21	19- 90,5	1-4,8	16-76,2	18	13- 72,2	5- 27,8	17- 94,4	1- 5,6
итог	итого			170	163- 95,9	18-10,6	12975, 9	150	85- 56,7	38- 25,3	138- 92,0	6- 3,5


Комплексное влияние генов RYR1 и H-FABP на показатели мясных признаков откормочного

молодняка белорусской мясной породы



Показатели откормочной продуктивности молодняка белорусской мясной породы различных генотипов по генам RYR1, H-FABP и PRKAG3


Генотип	Возраст достижения массы 100 кг, дней	Среднесуточный прирост, г	Затраты корма на 1 кг прироста, к.ед.
NN HH dd II	184,2 1,1	770 13,5	3,35 0,08
NN Hh Dd VI	193,2 1,8**	698 15	3,77 0,11**
NN HH (либо Hh) dd (либо Dd) II (либоVI)	188,8 0,8**	724 6**	3,62 0,04**
Nn HH (либо Hh) dd (либо Dd) VI	190,7 3,3	722 12*	3,59 0,05*
Nn Hh DD (либо Dd) VV	192,2 1,4**	732 20	3,56 0,08
NN hh DD VV	193,3 2,1**	720 33,5	3,85 0,22

Примечание – разница с показателями животных генотипа RYR1^{NN}H-FABP^{H Idd}PRKAG3^{II} достоверна при: * - P<0,05; ** - P<0,01

Частоты встречаемости генотипов каппа-казеина (CSN3) в популяции быков-производителей белорусской черно-пестрой породы

Носительство мутации BLAD в различных линиях крупного рогатого скота белорусской черно-пестрой породы

Биотехнологический центр с опытным производством, РБ

Цитологическая лаборатория

Влияние генной конструкции с лактоферрином на показатель дробления микроинъецированных козьих зигот

Генная Количество Количество продробившихся Общее кол-во клеток, п-% жизнеспособных микроинъе конструкц ИЯ цированны клеток после х зигот до 2-хбласт. до 4до 8культивирования, n-% хбла блас CT. TOM. hLf-5 15 15-100,0 10-66.7 2-13,3 13-86.7 hLf-311-84,6 13 12-92,3 11-84,6 12 Буфер 10-83,3 9-75.0 1-8.3 10-83,3 16 15-93,6 12-75,0 1-6,3 14-87,5 Клетки без прокола

Трансмиссия трансгена приплоду F1 от производителей Лака-1 и Лака-2

Трансген-	Осеменено коз, n-	*Оплодот- ворилос	Получено живых	**Получено трансген	***И	з них:
произв о- дители	%	ь коз, n- %	козлят, n-%	ных козлят всего, n- %	Самки, n- %	Самцы, п-%
Лак-1	44-40,4	36-81,8	72-52,2	22-30,6	10-45,5	12-54,5
Лак-2	65-59,6	42-64,6	66-47,8	15-22,7	3-20,0	12-80,0
Итого	109-100,0	78-71,6	138-100,0	37-26,8	13-35,1	24-64,9

^{* -} от числа осемененных животных

^{** -} от числа полученных живых козлят

^{*** -} от числа полученных трансгенных козлят

Продолжительность беременности, наличие трудных козлений и многоплодие у самок, осемененных трансгенной спермой

Группы живо	Окозлилось маток, n	Кол-во дней	*Кол-во трудныхк	*Многоплодие маток			
тных		берем озлений енност n-% и, n		Одинцы, n- %	Двойни, n-%	Тройни, n-%	
Опыт	76	148,51 0,2 7	4-5,3	21-27,6	43-56,6	12-15,8	
Контроль	58	149,34 0,7 2	2-3,4	15-25,9	31-53,4	12-20,6	

Содержание лактоферрина человека в молоке трансгенных коз-продуцентов

Генная конструкция	Трансгенные производители	Количество коз- продуцентов, гол.	Продукция лактоферрина человека молоком, г/л	
			min-max	В среднем
hLf5	ЛАК-1	9	2,08-8,10	5,8
hLf3	ЛАК-2	3	0,25-3,40	1,9
Всего		12	0,25-8,10	4,9

Экспериментальное стадо

Доклад окончен

Спасибо за внимание